

Afforable Passivhauses for Exeter

KNIGHTS PLACE ROWAN HOUSE

Planning Constraints Knights Place

Rowan House

- Former garage site within established 60ies housing estate
- Sloping site

- Height restrictions due to overlooking/privacy issues
- Need to maximise units on site
- Overshading from adjacent 3 storey buildings and the blocks themselves

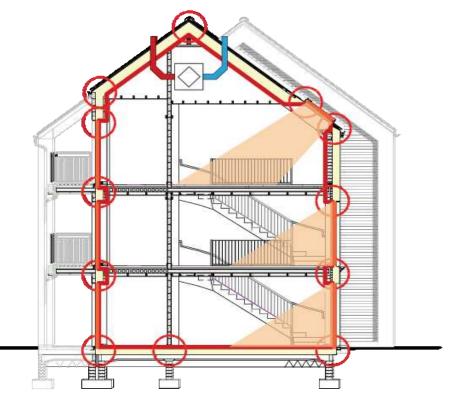
- Conservation area between two listed buildings
- Small brownfield site within established residential area with limited access
- Height restrictions due to overlooking/privacy issues
- Overshading from adjacent buildings
- Overshading of south elevation from listed 3.5m high garden wall

Passivhaus – Design Strategy

Fabric design

<u>Walls</u> 250mm EIFS U< 0.12 W/m²K <u>Roof</u> 400mm insulation U< 0.11 W/m² <u>Floor</u> 250mm insulation U< 0.10 W/m²

Air Barrier


Internal plaster, structural screed, vapour check in roof

Thermal Bridge Free

Windows and Doors Uw (instl) < 0.85 W/m²K

MVHR >92% efficient MVHR

Optimized Solar Orientation Compact Building Form

PHPP

Both blocks at Knights Place and Rowan House have been certified to meet Passivhaus Standard

The direct electric heating and hot water strategy lead to a relatively high primary energy demand.

Certified

Passive House

Passive House Institute

Key Achievements

- Designed to meet Code 4 of the CSH
- Fully compliant with Lifetime Homes Standards
- All occupants gain private gardens, designed using Permaculture principles
- Solar Panels serving each individual unit will further reduce the energy demand for domestic hot water
- Designed to meet **best practice daylight** levels in accordance with the requirements of the Code for sustainable homes.
- 100% energy efficient light fittings throughout
- Compliant with *Secured by Design*
- Independently assessed under the *Building for Life standard with a final score of* 18.5 out of 20
- Considerate Constructors Scheme rating of 37.5 out of 40
- Use of low water use fittings reduces the water consumption to less than 80 litres/person/day

Healthy by Design Building Biology Principles

- Non-toxic and non VOC materials
- High levels of air quality (CO2 <600ppm)
- High levels of natural daylight
- Thermal comfort
- Avoidance of dust and dust mite habitats
- User control
- Radial wiring to reduce low frequency Electro-Magnetic Fields (EMFs)
- PVC free throughout

Site / Landscaping Permaculture Principles

Landscape Architect and Species expert as part of Gale & Snowden inhouse design team.

Emphasis on integrated design using Permaculture principles

Working with natural system not against

Create sense of ownership

Involving Future Residents

Pre-occupancy

Community liaising at pre planning stage

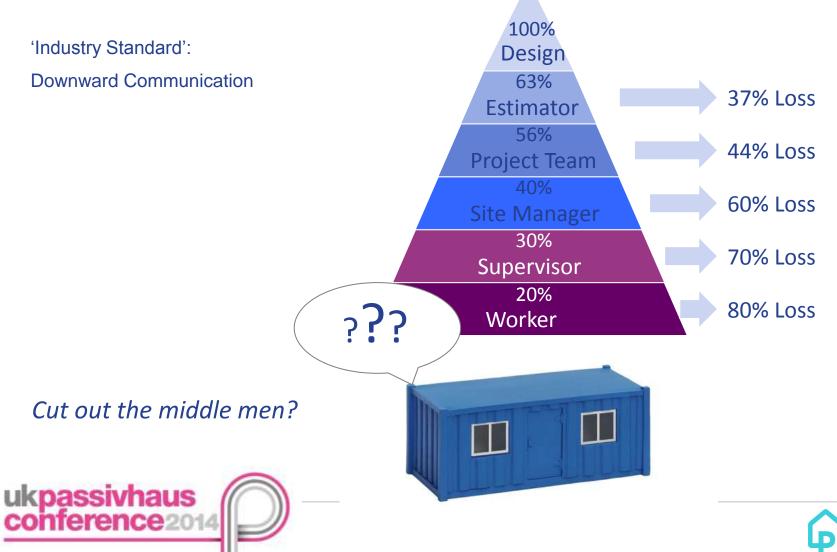
Passivhaus building design and operation workshops held with prospective tenants

Pre-occupancy training for selected tenants

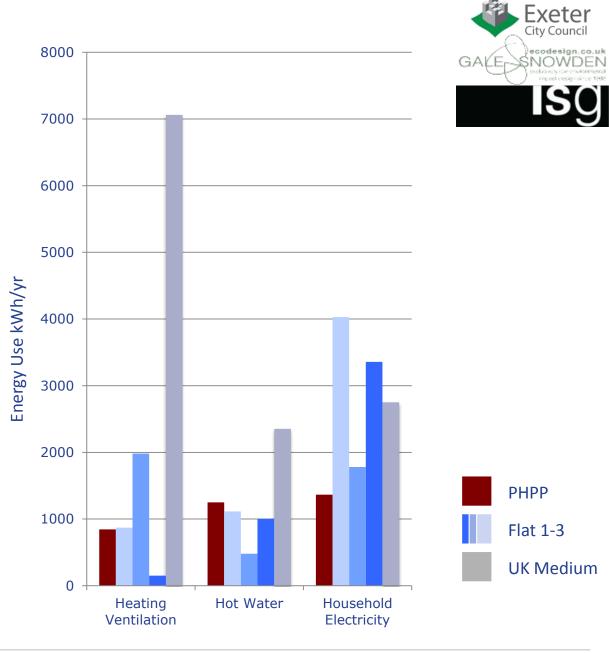
Community garden design workshops with neighbours

Post-occupancy

Training User manual Exeter City tenant Support



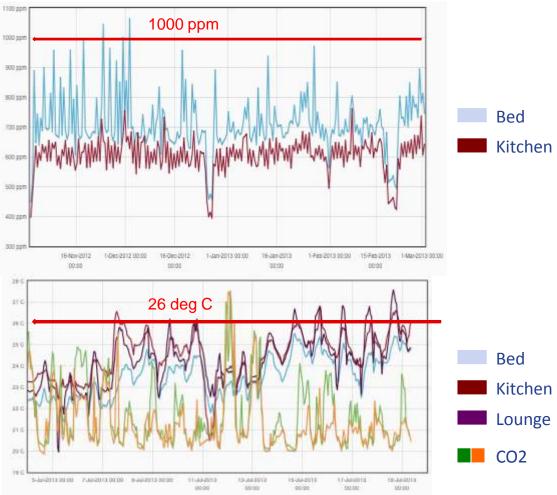
The biggest challenge Communication


'Industry Standard':

Does it Work?

Energy & Comfort Monitoring

Does it Work?


Energy & Comfort Monitoring

CO2 Monitoring Winter period November ñ March

Mean average 600-710ppm

Temperature Monitoring 2013 Heat wave

0.45% above 26 degree C

What we have learnt

- Need for greater contractor-designer collaboration
- Greater consideration of work sequencing
- Simplify the design to make it more robust
- Greater lead in time
- Repairs and maintenance team early
 involvement
- Future users involvement and training
- A committed client

Feedback What tenants said

'I love the fact that the flat is warm all the time and whenever I come in from outside it is always nice and warm unlike any other building I have been in' (tenant Knights Place)

> 'It gets hot sometimes but is controllable via a window or boosting the vent.' (tenant Rowan House)

' I have never felt uncomfortably hot or cold a single day since moving in' (tenant Rowan House)

Thank you

SAV

KNIGHTS PLACE AND ROWAN HOUSE Clientis Perspective

ecodesign.co.uk

Contents

- Why develop?
- Why passivhaus?
- How was the journey?
- What have we learnt?
- Where are we heading?

Why Develop?

- Political drive
- NAHP 2008 -2011 finance
 available
 - Land availability
- Anticipated HRA reform ñ test case

Why Passivhaus?

Exeter City Council

GALE

ecodesign.co.uk

How was the journey?

Exeter City Council

ecodesign.co.uk

What have we learnt?

ï Fund it yourself
ï Give yourself plenty of lead-in time
ï Donít make a ëbig thingí about its low-energy credentials
ï Think hard about tenant training to get it right
ï Donít simplify controls
ï Get other in-house teams involved earlier for buy-in
ï Monitoring helps!
ï It works!

Any questions?

