

Passivhaus and EnerPHit retrofits: a comparison

A comparison of completed certified projects designed by greentomatoenergy

Marine Sanchez ñ Building Physics Engineer & Passivhaus Designer

1. Introduction

greentomatoenergy, its projects and its domestic clients

<u>The Company</u>

- Building physics engineers based in London
- Consultancy and support to deliver low energy buildings
- Design of many retrofits and new-builds to varying standards
- Passivhaus design of the first 2 Passivhaus retrofits in the UK

Our Clients

ukpassivhaus conference20

- In-depth renovation of family homes
- **Comfort** is a key driver (along with low energy bills)

1. Introduction

greentemato energy

Our Projects

Lena Gardens

- 1st PH residential retrofits (UK)
- Private retrofit
- CIBSE Retrofit Award 2013

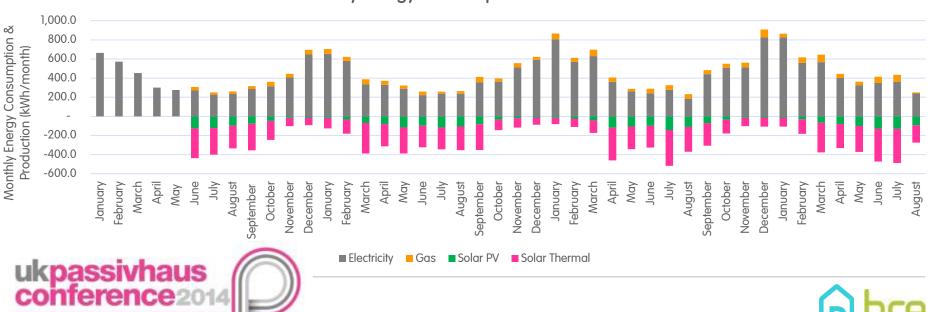
Princedale Road

- 1st PH residential retrofits (UK)
- Social housing
- TSB iRetrofit for the Futurei

Barmouth Road - 1st EnerPHit in London

2. Monitoring Results

Results & monitoring data of certified PH & EnerPHit refurbishments


Lena Gardens (PH)

- Ongoing monitoring (April 2011)
- Good monitored energy performance
- Soft feedback = good in terms of comfort and IAQ

Barmouth Road (EnerPHit)

- Ongoing monitoring (April 2014)
- No overheating (Summer 2014)
- Anecdotes

Year	Pre Retrofit	2011	2012	2013
Grid Energy Consumption	252.6 kWh/m².year	25.2 kWh/m².year	26.6 kWh/m².year	31.9 kWh/m².year

Monthly Energy Consumption & Production

3. EnerPHit / PH Standards

Key differences between Passivhaus & EnerPHit standards

Passive House Passive House Institute	PASSIVHAUS	ENERPHIT	Certified Retrofit Proster frase institute
Criteria	Based on PHPP heating demand	Based on PHPP heating demand	Based on certified components
Space Heating Demand Q _H	\leq 15 kWh/m2.year	\leq 25 kWh/m2.year	Component Criteria
Primary Energy Demand	\leq 120 kWh/m2.year	\leq 120 + (Q _H -15) *	1.2 kWh/m2.year
Airtightness	\leq 0.6 ach @50Pa	\leq 1.0 act	n @50Pa
Overheating	≤ 10% (T > 25°C)	\leq 10% (T	> 25°C)

greentemato energy

3. EnerPHit / PH Standards

EnerPHit with a iCertified Componentî approach

<u>Criteria</u>

- Opaque building envelope (floor, external walls & roof) i $f_T * U \le 0.15 \text{ W/m}^2$.K for exterior insulation i $f_T * U \le 0.35 \text{ W/m}^2$.K for interior insulation

- Windows

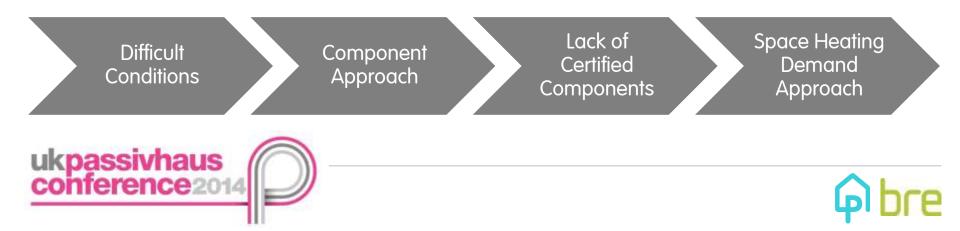
- External Doors ï $f_T * U_{D, \text{ installed}} \leq 0.80 \text{ W/m}^2.\text{K}$

greentemato en

- Ventilation

 $\ddot{i}~\eta_{HR,~eff} \geq 75\%$ $\ddot{i}~SFP \leq 0.45~Wh/m^3$

4. EnerPHit Challenges


greentemato energy

Context of greentomatoenergyis retrofit projects

- Typically Victorian / Edwardian solid wall homes in conservation areas
- FaÁade appearance (windows and walls) to be retained
- Non-ideal orientation & compactness (canit be changed!)
- Space limitation

EnerPHit is nearly as difficult to achieve as Passivhaus in these retrofit conditions !!! *

* We believe there are many occasions where EnerPHit is significantly easier, but these occasions donit represent our typical projects.

5.1 Insulation Approach & Materials

- Same approach to materials (performance / space / cost)
- Similar moisture issues
- Insulation thickness EnerPHit \leq Passivhaus
- Challenge to achieve consistent U-values of the whole envelope

(costs & space limits → underpinning / room height / room width Ö) ^a Compensation in other areas

greentemato energ

Barmouth Road

i upgraded solid wall U-values [0.17 to 0.25 W/m2.K] i upgraded existing roof U-value [0.19 W/m2.K] → other U-values pushed ≤ 0.10 W/m2.K

5.2 Windows & Doors

No certified components that meet exactly planning/heritage conditions → Need to use bespoke products

- Additional modelling (to assess performance)
- Limited Performance (Uw \approx 1.0 W/m².K \neq Uw \leq 0.80 W/m².K for PH windows) ^a Compensation in other areas

Lack of certified itraditional lookî retrofit products (entrance doors, windows, Ö) → iCertified Componentî approach made impossible

greentemato energy

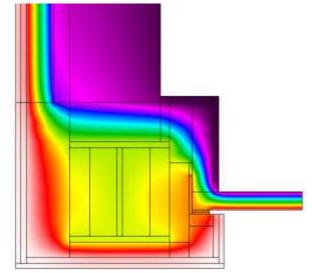
5.3 Airtightness

New airtightness layer in Passivhaus project

-	

ukpassivhaus conference2014 To lower EnerPHit project costs:

- Retained existing components (staircases, chimney breasts, timber joists Ö) ^a more difficult to achieve low n50
- Used non-certified products (rooflights)
 ^a difficult airtight installation



5.4 Thermal Bridging

Challenges with junctions + structure related to modern extensions

- Retrofit \neq fully thermal bridge free
- Main aim = surface temperature to avoid mould / condensation risks
- Early involvement in design to keep costs / complications manageable

	G	olor Legend		
0.0" 2.5" 5	.0° 7.3° 10.0°	12.5" 15.0"	17.5" 20.0	° C
	1.1.1.1		1.1	Close

conference2014

Challenges with timber joists crossing the insulation layer

- Additional modelling (moisture transfer analysis)
- In-situ monitoring
- \neq Rehanging of joists within thermal envelope (PH)

5.5 Ventilation System

- Similar approach to ventilation (MVHR)
- MVHR design not as challenging as people thought when taken into account from early design stage (use of floor voids, stud walls, Ö)

5.6 Heating System

 Heating and ventilation systems separated on EnerPHit projects (as heat load > 10 W/m²)

6. Retrofit at scale

EnerPHit is unlikely, currently, to be the appropriate standard for mass-scale solid wall retrofit in the UKÖ

Key constraints

- Health and comfort benefits not fully accounted for
- 1.2 million UK dwellings in conservation areas (\geq 50% located in London)
- Use of IWI (with associated moisture risks, thermal bridging and loss of floor space)

Technological innovation to help?

- Cost of certification higher on domestic retrofit (% of total project cost) Possibility for cost reduction?
- UK itraditionali buildings with varied shapes Less compact than Central Europe?
- Availability and cost of certified components Certified product availability to increase so cost to come down?

6. Retrofit at scale

Öbut the framework provided by EnerPHit is right

Possibilities

- Use of PHPP (whole house performance-based model) to identify reasonable kWh/m².year
 - → based on age and risks (German model)?
 - \rightarrow based on research pilots (TSB)?
 - → AECB standards (Silver)?
- Need for more certified products & product innovation
- Need for readily available low-cost finance / incentives to support deep retrofits (and avoid lock-in risk due to light / medium retrofits)

7. Conclusion

- EnerPHit nearly as difficult as Passivhaus for retrofit of itraditionali UK solid wall homes, mainly due to the lack of aesthetically appropriate and cost-effective certified components
 - → EnerPHit project chosen with care
 - → Focus on iCertified Componentî approach
 - \rightarrow Certified component market to be developed

 EnerPHit still unlikely to be appropriate standard for mass-scale retrofit of solid wall houses in the UK Öbut the framework provided by EnerPHit is right

Questions

