

KEN BOYLE DESIGN

Cedar Multi's

Rupert Daly

Why Passivhaus?

Woodside Estate: Background

- 4000 residents (approx) Diverse range of nationalities
- 32 languages
- Tenants consist of single people, families, asylum seekers, young people from the care system, those who have been homeless, elderly, disabled.
- Community has issues with high unemployment, poverty, isolation, mental health and people with addictions
- High unemployment
- Benefit dependency Income deprived
- •
- Fuel Poverty
- Food Poverty

Woodside Estate: Background

2011

- Estate had suffered from a lack of investment for a number of years impacting significantly on the resident's quality of life.
- Stock transfer to Queens Cross Housing Association

2012

Collective Architecture commissioned to carry out Options Appraisal

Woodside Estate: Client Vision

"To be recognised as a leader in providing excellent housing and community services. To create and sustain vibrant communities and to inspire others to do the same."

> Queens Cross

Housing Association

COLLECTIVE ARCHITECTURE

TIBE ROAD

Woodside Estate: Options Appraisal

- Access and Security
- Perception and Identity
- **Refuse and Recycling**
- Communal areas and Redundant Spaces
- **Open spaces**
- Play areas
- **Ownership & Maintenance**
 - Utilities

COLLECTIVEARCHITECTURE

RER

Woodside Estate: Vision

Woodside Estate: Vision

Creating a sustainable community

Live, Play, Work & Grow
Reduce, Reuse, Recycle & Recover

- Enhance the existing
- Improved Energy performance

"This options appraisal explores the ambitions of people living in Woodside for their homes and their future. They want to transform their area from a post-industrial corridor between the city centre and the north to a desirable, high quality, vibrant and sustainable local community that draws people in and makes them want to stay."

> Shona Stephen Chief Executive Queens Cross Housing Association

So why Passivhaus again?

- Compared to alternative solutions including available grant funding (Feed in Tariff, Renewable Heat Incentive etc.) It is the most financially viable
- A fabric first approach ensured the main capital investment works are future proofed.
- We are improving the fabric anyway so why not make it count?
- Standards demand quality from holistic detail design consideration to onsite implementation. Funding often considers packages in isolation.
- There is no point in putting lots of renewable energy into a building that leaks energy like a sieve.
- There is no point in putting high quality thermal components into a building if the value is being lost through the junctions/ interfaces.

So how do we do it?

Passivehouse Principles: Perception vs Reality

- Form Factor (Wow!)
- MVHR (client concern)
- Airtightness (surprisingly good already)
- Loads of Insulation (only 120/160mm rockwool actually)
- Minimise Thermal Bridges (okay but some will be costly)
- Orientation (predetermined but consider solar gain)

Specification: MVHR - what are the issues.

Flat, Occupants and Ventilation

- Concerns over capital cost unit/ ducting/ infrastructure
- Concerns over gaining access for maintenance
- Concerns over filter costs and replacement interval
- Why can't we use industry standard?
- What's to stop Tenant switching it off?
- Why is it needed?
- What's wrong with flat duct?
- Why, Why, Why?
- Why do we need silencers?
- Why do we need preheaters?

COLLECTIVEARCHITECTURE

3.

And so begins the insightful journey!

Specification: MVHR options

- Centralised MVHR not practical for distribution
- Operating range for conventional MVHR too high for small apartments
- What are the alternatives?

Specification: MVHR - alternatives

fresh-r®

Specification: MVHR

Heat transfer coefficient is >1000x better than polyethylene

Much more compact unit

=

fresh-r®

Specification: MVHR

• Wi-fi enabled

Potential to signal Housing association is there was an issue and to monitor remotely

• Demand controlled – Humidity/ CO2

Does not require tenant interaction but simple controls available for temporary boost

Heat exchanger/ Primary filter can be washed instead of replaced

Saving of £100k over 10 years on this project compared to replacing filters on 6 month basis

- Additional filters optional
- Reduced infrastructure cost

Less coring for ducts, bulkhead, decoration

• Small enough to be integrated into window frame

Specification: Testing

MEARU CEDAR FLATS: 'FRESH-R' MVHR TESTING

C. Morgan A. Poston G. McGill

October 2015 Final Version

MEARU The Mackintosh Environmental Architecture Research Unit Mackintosh School of Architecture The Glasgow School of Art

Specification: Results

easy to plan

Specification: Result

Cedar Multi's: Tendered Spec

Passivehouse EnerPHit Standard – PHPP V8

- Mitigate Fuel poverty
- Provide base heating and hot water load FOC
- Significantly reduce landlord running costs
- Improved Indoor Air Quality
- Improved Amenity
- Additional Insulation
- Triple glazing
- Solar thermal
- Mitigate thermal bridges
- Airsource heat pump required to meet PE target?
- Improve Air Tightness
- Recover heat from ventilation systems Conventional PH certified
- New lifts
- Change communal lighting to LED

Woodside: Value Engineering

Passivehouse EnerPHit Standard – PHPP V8

- Mitigate Fuel poverty
- Provide base heating and hot water load FOC
- Significantly reduce landlord running costs
- Improved Indoor Air Quality
- Improved Amenity
- Additional Insulation
- Triple glazing PH certified? Contractors choice
- Solar thermal -- Not necessarily a bad thing to omit
- Mitigate thermal bridges Fire escape balcony affected
- Airsource heat pump required to meet PE target?
- Improve Air Tightness
- Recover heat from ventilation systems Conventional PH certified
- New lifts
- Change communal lighting to LED

Requirement to meet EnerPHit certification omitted but Passivehouse standards and assessment to be maintained!

Value Engineering: Thermal Bridges

Woodside: Aerial View

Woodside: Entrances

Woodside: Entrances

Woodside: Aerial View

Woodside: Existing Photos

Woodside: Site Progress

Airtightness Target

Woodside: Progress

Airtightness interface

Woodside: Progress

Airtightness jointing – Precast panels

Woodside: Progress

Thermal Break connection plates

So where are we?

Nearer than we thought due to PHPP V9 and PER value !

Specific building characteristics with reference to the treated floor area										
	Treated floor area m ²	8180.2		Criteria	Alternative criteria	Fullfilled? ²				
Space heating	Heating demand kWh/(m ² a)	17	≤	30	-					
	Heating load W/m ²	13	≤	-	-	yes				
Space cooling	Cooling & dehum. demand kWh/(m ² a)	-	≤	-	-					
	Cooling load W/m ²	-	≤	-	-	-				
	Frequency of overheating (> 25 °C) %	0	≤	10		yes				
Frequency excessively high humidity (> 12 g/kg) %		0	5	20		yes				
Airtightness	Pressurization test result n ₅₀ 1/h	1.0	≤	1.0		yes				
Non-renewable Primary Energy (PE) PE demand kWh/(m²a)		139	≤	-		-				
Primary Energy Renewable (PER)	PER demand kWh/(m ² a)	69	≤	75	75					
	Generation of renewable energy (in relation to projected building	0	≥	-	-	yes				
					² Empty fie	ld: Data missing; '-': No requirement				
I confirm that the values given herein have been determined following the PHPP methodology and based on the characteristic values of the building. The PHPP calculations are attached to this verification.										
Ta	sk: First name:			Surname:		Signature:				
1-Designer	Rupert	lesued on:	Daly	City:						
		issued on.		City.						

But still not quite EnerPHit yet!

Woodside: Specification compromise

Storage heat losses

		Storage 1	Storage 2	Buffer storage tank (only heating)	Compact unit						
Selection of storage tank		2-DHW only	0-No storage tank	0-No storage tank	0-No						
Storage necessary for HP Solar DHW connection											
Heat loss rate Storage volume Standby fraction	W/K litre	187.0 18900	3.0	2.0							
Location of storage tank, inside or outside of thermal envelope Temperature of mechanical room Typical storage tank temperature Manual entry of storage temperature	ငံ ငံ	1-Inside 20.0 55.0	1-inside	2-Outside							
Average standby heat losses storage tank Additional heat losses storage tank, solar operation Possibly utilization factor of heat losses Annual heat losses DHW storage tank Annual heat losses buffer storage tank	W W kWh/a				400 400 400 400 400 400 400 400 400 400	57334 ^{KWh(m*a)}					
Auxiliary calculation - heat losses through storage tank according to EU efficiency classes											
Storage volume ErP class Maximum permissible standby heat loss Heat loss ratio for PHPP calculation	litre W W/K	83 1.8	C	C		Too much!					

Woodside: Storage Loss option offset

- Externally insulate poor performing HW Cylinder - Under consideration
- Reduce size of HW tanks Under consideration
- Omit tanks altogether Not in tenants best interest as benefit to off peak tariffs
- Consider waste water heat recovery such as Recoup Pipe+ HE (PH Certified) Maybe next time
- Look at alternative storage options such as SunAMP Phase change material. Maybe next time

COLLECTIVEARCHITECTURE

Sunamp heat batteries-0.579kWh storage losses per 24hrs

Woodside: Lessons Learned to date

- Form Factor Makes a huge difference to energy performance and cost.
- Innovation Great, but barriers due to <u>perceived</u> risk. Keep it simple.
- Challenge of refurbishment Degree of cost uncertainty and flexibility but overall very suitable for upgrade
- Research Critical to exploring options. Ask lots of questions......all the time!
- **Procurement** Design and Build Opportunities to work as a team with Contractor and Client to provide effective solutions on a restrictive budget.
- Large Scale Passive House Refurb On this project the challenge is more to do with M&E integration to the existing building than the building envelope.

COLLECTIVEARCHITECTURE

• Cost Effective – Project cost to be confirmed but additional cost to PH standards are likely to be low.

Thank you for your time!

Rupert Daly

COLLECTIVE ARCHITECTURE

r.daly@collectivearchitecture.co.uk

