

Simple Design Solutions

Nick Grant Elemental Solutions

Value Engineering!

"It has been said an engineer is a man who can do for five shillings what any fool can do for a pound...."

Nevil Shute, quoting anonymous epigram

Value Engineering!

"My job is not done until we have got rid of all the architectural delight...."

Value Engineered (3.5 billion year design time)

Nature all looks a bit Darwinian

'An inordinate fondness for beetles' (300,000 species of beetle) – JBS Haldane

Form

- Heat loss area/TFA
 - o <3 is good target</p>
- Orientation and shading by building
 - L & H shapes are problematic
- Structure inside easy airtightness

Think skeleton and skin

Do what I say not what I did!

- \circ A/TFA = 5
- Shape shades windows
 (reveal shading in PHPP)

same wall area!

Reduce HL Area

e.g. 100mm wall height = 0.1 x 32m perim x 0.15 U x
 70 kKh/a = 34 kWh/a

if $90m^2$ TFA = 0.4 kWh/m².a

- Flatter roof pitch or cold roof
- Lower lambda insulation = thinner walls+roof

Maximise TFA

- Space under stairs
- Optimise stair width
- Avoid plant room label on domestic
- Beware double height spaces
- Design out 'circulation' for non dom buildings.

Superficial simplicity is expensive

http://www.archdaily.com Photo © Eibe Sönnecken

Fenestration

- Orientation
 - South net gain, E&W summer comfort issues.
- o Quantity
 - For views and daylight not heat and symmetry.
- Format
 - Size, shape, height, fixed and opening elements.

Passive Solar;

What does free heat cost/kWh?

Passive House verification

REDUCTION FACTOR SOLAR RADIATION, WINDOW U-VALUE

Window area 36m²

- About £6 'saved' per m² window per year @ 80p/kWh*
- Gets worse the more glass you add! (utilisation factor, solar shading, additional mass - all cost)
- BUT, free if you needed the window area anyway.

^{*(3%} discount rate, 20 year life, £400/m² window cost, 100% utilisation – YMMV)

Glass to floor

0

Larger overhang to shade May need external blinds Structure more challenging Difficult cill detail Dirt from splash Loss of wall space

Photo Lisa Pasquale

Design out mechanical shading in UK climate

Windows - performance

For UK Building Regulations, the performance of these two windows can be considered the same:

But with Passivhaus, you have to calculate them individually

Poor Installation;

Traditional mullions

Installation free of thermal bridges; Simplified design

 $U_{window} = 1.8 W/m^2K$

 $U_{window} = 0.8 W/m^2K$

How could you optimise the window performance through design?

Thermal bridge free details save about 2-3 kWh/m².a

Expensive to calculate for one-off so develop standard details

Internal Heat Gains

Low but realistic IHG assumptions are key to closing performance gap.

Not all 'free heat' is free, e.g. IT, lighting etc.

BUT under or overestimating IHGs has design & value consequences

School	Children	TFA m ²	m ² /child
Bushbury Hill (UK)	240	1707	7.1
Oakmeadow (UK)	450	2205	4.9
Montgomery (UK)	446	2367	5.3
Swillington (UK)	240	1344	5.6
Wilkinson (UK)	459	2500	5.4
LH Hannover (D)	300	3507	11.7
Gronau (D)	336	2953	8.8
Reidberg (D)	500	5540	11.1

Average for UK examples¹ Average for German examples $5.7 \text{ m}^2/\text{child}$ 10.5 m²/child

+1.3 W/m² = + 5.8 kWh/(m².a)

Domestic IHG

"All models are wrong, some are useful" George Box

Are we there yet?

We can always add complexity and cost but simplicity and value has an end point.

However we have a long way to go.