

Scaling Up Passivhaus

THE CENTRE FOR MEDICINE, UNIVERSITY OF LEICESTER

Predicted Performance

Specific building demands with reference to the treated floor area

		Treated floor area	9655.0 m ⁻		Require	ements	Fulfilled?*	
Space heating		Heating demand	12.11	kWh/(m²a)	15	kWh/(m²a)	yes	
		Heating load	10	W/m ²	10	W/m²	yes	
Space cooling		Overall specif. space cooling demand		kWh/(m²a)	15	kWh/(m²a)	yes	
		Cooling load		W/m ²	-		-	
		Frequency of overheating (> 25 °C)		%	-	l	-	
Primary energy	Heating, cooling, auxiliary electricity,	dehumidification, DHW, lighting, electrical appliances	119	kWh/(m²a)	120	kWh/(m²a)	yes	
		DHW, space heating and auxiliary electricity	54	kWh/(m²a)	-		-	
		Specific primary energy reduction through solar electricity		kWh/(m²a)	-		-	
							[
Airtightness		Pressurization test result n50	0.3	1/h	0.6	1/h	yes	
							* empty field: data missing; '-': no requirement	

Treated floor area: 9,655 m²

Window br	indow breakdown					
		Heat				
	Losses	gains	Balance	area m²		
	kWh/m ²	kWh/m²	kWh/m ²	(% of wall)		
North	2.8	1.0	-1.8	715.5 (8.7%)		
East	6.7	4.1	-26	1,658.5 (20.2%)		
South	2.9	2.2	-0.8	721.2 (8.8%)		
West	6.2	2.4	-3.7	1,556.5 (19.0%)		
Horizontal	1.3	2.4	1.1	232.4 (2.8%)		
Total	19.8	12.1	-7.8	4.651.7 (56.7%)		

U-values:	Walls	0.13W/m²/k
	Roof	0.13W/m²/k
	Floor	0.13W/m²/k
Airtightness:	lm³/m	²/hr @ 50Pa
Equates to:	0.33 a	c/h

ukpassivhaus conference2014

ilation	
ation rmal Ages	Heating, 13
oor	
oof	and the second second
	internet
dows	Solar
ses	Gains

e fabric U value required e fabric U value of design		e required 0.277 of design 0.232	0.277 W/m2.yr 0.232 W/m2.yr			
at Losses	1	Nindows	191,576 kWh/a			
	21	Exterior wall - Ambient	31,731 kWh/a			
	3 I	Roof/Ceiling - Ambient	26,395 kWh/a			
	4 Floor slab / Basement of		i 25,222 kWh/a			
	5 E	Exterior TB (length/m)	16,388 kWh/a			
	_					

Client

Structural and Civil Engineers

Structural and Civil Engineers

Contractorís Design Team

An Overview of the 2011 Client Brief:

- i Bring together the Schools of Medicine, Health Sciences and Psychology
- ï Adjacent to the existing medical building
- ï Sensitive to context ñ ecology and heritage
- ï Contribute towards reducing the University's carbon footprint ñ passive design
- ï Allow the existing building to be upgraded in the future
- i 13,000sqm of teaching, research and support spaces for 2,400 occupants
- i Range of flexible teaching spaces with potential for conference use
- ï Deliver the building by September 2015

Background Site Information – Regent College Site

Planning Issues

- Locally listed building (Regent College)
- ëConservation Areaí and listed ëFire Station Cottagesí
- Protected trees on site boundary ï
- Protected views towards the War Memorial ï
- Risk of overshadowing adjacent buildings ï
- Loss of open space & playing fields ï
- **Ecological impact** ï
- Concerns over car parking provision ï
- Bomb shelter & potential archaeology

Design Approach

- Demolish bomb shelter provide new football pitch ï
- Increase site biodiversity ï
- Respect Regent College ï
- Face the University and mark the start of the campus ï
- Provide an efficient plan form ï
- Maximise passive measures ï

ukpassivhaus conference201

- Square block responds to site boundaries.
- Split block up allowing views through into site.
- Narrow floor plate to max daylight.
- Landscape planted through building gaps.
- Stepped heights of blocks high to Uni Rd.

ukpassivhaus conference2014

- Rotate blocks to face directly south.
- Orientation best to control solar gain.
- Building faces the corner legible entrance!

- Blocks turn back on College grid into site responding to context.
- Rotation provides a pedestrian arrival space and separate service zone.

AssociatedArchitects

Façade Respond to Sun

animates building protection from solar gain.

High Level View from the Roof of MSB

Proposed Site Layout

ukpassivhaus conference2014

Efficient AHUs with Heat Recovery

Full curtain walling with brick slip panels (concrete backing panels for thermal mass)

Active external shading blinds (continuous blind box detail as part of curtain wall façade)

Highly insulated cavity wall to lower floors

Plant rooms brought inside Passivhaus 'TFA'

(distribution within ceiling voids of occupied floors only)

Changed to insulated render

GAHE Labyrinth (change to vent towers)

Tender: Precast Concrete Sandwich Panel

- Unitised curtain walling windows between precast brick slip clad panels
- Air seals on all four sides ï
- Opening vent panel behind fixed louvre ï
- Individual blind box for each window
- Thermal mass ï

ukpassivhaus conference2014

CPs: Full Curtain Walling with Brick Slips

- Full curtain walling faÁade ñ storey height screens ï
- Brick slip panels fixed to insulated metal panels ï
- Reduced requirements air seals ï
- Opening vent panel behind fixed louvre ï
- Continuous blind box around slab perimeter ï
- Thermal mass replaced by non-structural infill ï

Tender: Precast Concrete Sandwich Panel

CPs: Full Curtain Walling with Brick Slips

Pros:

- Single subcontractor responsibility ï
- Easier construction ï
- Faster programme ï
- **Tighter tolerances** ï

Tender: Precast Concrete Sandwich Panel

Cons:

- ï Planning risk
- ï Additional movement joints
- ï Risk of interstitial condensation
- ï Additional seals / VCLs required
- ï Overall faÁade zone increased ~150mm
- ï Greater coordination with PT frame

ukpassivhaus conference2014

CPs: Full Curtain Walling with Brick Slips

External Shading Blinds

- CTB blinds not used before in UK ï
- UoL nervousness about maintenance ï
- Automatic operation ñ linked to BMS ï
- Automatically retract in high winds ï
- Tender design small sections ï
- Contract continuous ëribboní ï
- Blind box thermal weak link ï

159

R.C COLUMN

ukpassivhaus conference2014

Façade Mock-Up Panel

Thermal Envelope

Tender:

Roof top plant rooms outside thermal envelope

Basement plant room inside the thermal envelope

Contract:

2 0 0

-6 0 .

4

All plant rooms inside thermal envelope

Increased ëTreated Floor Areaí

OF THE NAME

Ventilation duct runs ñ inside thermal envelope

0000

P

Simplification of scheme

First Floor

Calculations 64.486 × 101 C 111 Charles Provide The

ukpassivhaus conference201

Cold Duct Runs

ïExtensive cold duct runs within envelope ïPlant room layouts changed to minimise cold duct runs ïSuitable AHUs ñ not available as PH certified products

Thermal Bridging

- Minimising thermal bridging is crucial ï
- Couldnít all be eradicated or calculated prior to contract ï
- Schedule of thermal bridges compiled ï
- WDES did thermal modelling ï
- Pile caps insulated on all sides, piles not insulated ï
- Thermal pads included on all steelwork connections ï
- GRC cladding changed to insulated render ï

	Base	2A estimate	WD proposal	
Thermal bridge description	Ψ W/(mK)	% losses	Ψ W/(mK)	% losses
Balustrade/mansafe fixings	0.000		0.000	
Parapet wall	0.150	1.5%	0.100	1.5%
Plant room upstands for walls	0.200	0.7%	0.200	
Plantroom to internal space	0.000		0.000	
Rooflight upstands - will be insulated			0.205	
Wall-roof with ballustrade	0.200	0.1%	0.100	0.0%
W 13 Inverted wall-roof junction	0.200	1.0%	0.048	0.3%
Rooflight-wall junction	0.300	0.6%	0.300	0.7%
Thresholds_	0.200		0.200	
Wall-window junction	0.070		0.070	
shade support fixings				T .
structure (columns & floors) into walls	0.000		0.000	
# 14 Collonade soffit to wall beneath	0.050	0.1%	0.075	0.2%
Cladding support to collonade soffit & wall - e	0.100	0.7%	0.100	
Collonade CONC soffit to support column	4.000	1.9%	4.000	2.2%
Collenade STEEL soffit to support column	4.000	1.6%	0.650	0.3%
Windposts			0.000	
fround pile tags in besenent - various configur	1.500	0.8%	1.500	0.9%
fround floor single piles in centre of floor	1.500	1.4%	1.500	1.4%
shound floor single piles at perimeter	1.000	0.5%	0.770	0.2%
Ferimeter ground beam	0.100	0.2%	0.000	

ukpassivhaus conference2014

Ground-Air Heat Exchanger

- ï Redesigned to ease construction
- ï GAHE located beneath the building
- ï Extensive coordination ñ design period increased
- ï Vent towers integrated into ëdummyí columns
- ï Verifying the efficiency of the system to suit PHI
- ï Very deep excavations
- ï Installation took longer than anticipated

08 September 2014

ukpassivhaus conference2014

Conclusions

- On track September 2015 and Passivhaus certification \bullet
- Difficulties sourcing products to suit the aesthetic
- Lack of Passivhaus knowledge and experience amongst contractors
- PHPP proved a useful design tool
- Effective communication of key design requirements -?
- Site supervision ?
- Increased capital costs for Passivhaus have fallen
- Achieving DEC A will be a challenge

