

Greater Manchester's Low Carbon Transition

Mark Atherton. Director of Environment

	BOLTON	MANCHESTER	ROCHDALE	STOCKPORT	TRAFFORD
GMCA	BURY	OLDHAM	SALFORD	TAMESIDE	WIGAN

FER MANCHESTER

LOW CARBON HUB

GM Emissions Strategy: Themes

- Energy
- Buildings
- Transport
- Sustainable Consumption & Production
- Natural Capital
- Skills and Growth
- Climate Resilience

Cross cutting

- Latest Climate Change Plan outlines actions to meet GM's 48% carbon target reduction by 2020 (from 1990)
- 5 Headline goals include reducing carbon, improving air quality, changing behaviours, adapting and developing our economy
- Devolution & Northern Powerhouse provides further opportunities
- ERDF Funds Place based systemic approach

Research & Evidence

Smart energy systems

could empower both consumers and

communities in GM.

econekt

Potential increasing role

1UNSTER

for district heating.

bio-fuels, heat pumps and solar technologies.

An Evidence Based Approach:

- GM spends over £5 bn/pa on energy (all)
- 1.2m households, 25% are social homes
- Use of electricity and gas in buildings accounts for 37% of total energy demand and 72% of direct CO₂ emissions
- 77% of domestic demand is heating and hot water
- 95% of homes use gas for space and water heating;
- Longer term targets require energy efficiency, low or zero carbon heating, predicated on energy efficient buildings
- GM has 140MW of installed renewable electricity & 29MW of heat capacity. However, technical potential for 9% of our electricity demand and **68%** of our heat demand to come from renewable sources.
- Significant potential for more:
 - Energy Efficiency through building retrofit
 - Heat networks/heat pumps
 - Solar technologies (heat and power)
 - Biofuel

GREATER MANCHESTER LOW CARBON HUB

GREATER

SCATTER - Introduction

Setting City Area Targets and Trajectories for Emission Reduction

Interventions for consideration by city regions are broken down into four broad categories
 Energy supply (e.g. use of solar PV panels and biomass for generating renewable energy)
 Energy demand from buildings (e.g. use of retrofit technologies, switching space heating)
 Energy demand from transport (e.g. ultralow emission vehicles, reducing domestic travel)
 Natural capital (e.g. city greening and peatland)

There are 3 key outputs of the model:

1	A greenhouse gas emissions inventory that is aligned with the World Resource Institute's Global Protocol for Community-Scale Greenhouse Gas Emission Inventories ("GPC");
2	A range of illustrative emission scenarios to 2050, based on the adoption or application of a number of emission reducing interventions using existing technologies; and
3	A report on the emissions target set that transparently details the nature and extent of any related emissions reduction, aligned with the World Resource Institute's <i>Mitigation Goal Standard ("MGS"</i>).

SCATTER Analysis

- Renewables (Solar Photovoltaics, Heat Pumps)
- Biomass power generation
- Shift from fossil fuels to battery or fuel cells for transport
- Shifting domestic transport behaviour
- Energy efficiency of domestic properties
- Improved efficiency of commercial heating and cooling
- Waste reduction, reuse and recycling

GREATER MANCHESTER LOW CARBON HUB

Subcategory Intervention description		Intervention description	Revised thresholds (Local)			
		1	2	3	4	
Direct local influence possible	local influence le Transport Passenger transport: Reducing distance travelled by individuals	In 2050, individuals travel the same distance as today. Significant shift to public transport	5% reduction in travel demand below baseline levels by 2030	15% reduction in passenger Km by 2035	25% reduction in passenger Km by 2035	
		Passenger transport: Shift to zero emission transport	By 2050 100% zero emission vehicles; all passenger trains and busses electrified	By 2040, 100% zero emissions vehicles and buses and complete railway electrification	By 100% 2035, zero emissions vehicles and buses and complete railway electrification	By 2035, 100% zero emissions vehicles and buses, complete railway electrification by 2025
		Passenger transport: Choice of fuel cell or battery powered zero emission vehicles	80% of zero emission cars use batteries, 20% use fuel cell by 2050	85% of zero emission cars use batteries, 15% fuel cell by 2050,	95% of zero emission cars use batteries, 5% fuel cell by 2050	100% of zero emission cars use batteries by 2050
		Freight: Shift to rail and water and low emission HGVs	Road haulage makes up 73% of distance, using conventional engines. Rail all diesel	Some shift from road to rail and water, and more efficient engines	Greater modal shift to rail and water; more efficient HGVs; more efficient logistics	Road modal share falls to 50%; greater hybridisation. Rail freight is all electric
	Households	Average temperature of homes	Average room temp is 18°C (equivalent to 0.5 degree increase from current av. temp)	Average room temp decreases to 17°C	Average room temp decreases to 16°C	Average room temp decreases to 16°C
		Home insulation	17% (0.19m) homes insulated, average thermal leakiness falls by 20%	Over 20% (0.23m) homes insulated, average thermal leakiness falls by 39%	45% (0.5m) homes insulated, average thermal leakiness falls by 57%	60% (0.7m) homes insulated, average thermal leakiness decreases by 75%
		Shift to electrification of home heating	The proportion of domestic heat supplied using electricity is 0-10%, as today	The proportion of domestic heating systems using electricity is 20%	The proportion of domestic heating systems supplied using electricity is 30-60%	The proportion of domestic heating systems supplied using electricity is 80-100%
		Home heating that isn't electric	The dominant non-electric heat source is biomass CHP	The dominant non-electric heat source is gas or gas CHP (biogas if available)	The dominant non-electric heat source is waste heat from power stations	A mixture of gas/biogas; biomass; and heat from power stations
		Home lighting & appliances	Energy demand for domestic lights and appliances increases by 20% (relative to 2016)	Energy demand for domestic lights and appliances is stable	Energy demand for domestic lights and appliances decreases by 40%	Energy demand for domestic lights and appliances decreases by 60%
		Electrification of home cooking	Energy used for domestic cooking remains at 63% electricity and 37% gas	Energy used for domestic cooking is entirely electric	Energy used for domestic cooking is entirely electric	Energy used for domestic cooking is entirely electric

Introduction to EnergyPath Networks

A modelling approach for strategic, spatial planning of the future energy system for a local area. How would you decarbonise building energy demands at the lowest cost to society?

- What would you need to do? Where in your local area? When would it need to happen?
- What investments would be required in buildings, networks and energy production across heat, electricity and gas?
- What is the sensitivity to uncertain factors, e.g. how would the electricity price in 2050 change the lowest cost plan; what plan is low risk and cost effective across most of the uncertainty?
- The approach considers spatial factors the relationships between buildings and the networks that serve them
- Uses an optimisation technique that tests all options and finds the lowest cost route to cutting carbon emissions. The outputs provide evidence to aid consensus building stakeholders and local communities.

96% Carbon Reduction by 2035

- suggests an earlier carbon target does not change the final heating system distribution in Bury.
- requires this change to happen earlier, with more happening in transition 1.
- suggests that working towards a 2035 carbon target increases the total cost of Bury's energy system by about 30% compared to no local carbon target
- the 2050 target cost 15% more than no local target.

Modelled Domestic Heating Systems in Bury to achieve an earlier carbon target

GREATER MANCHESTER LOW CARBON HUB

© 2018 Energy Technologies Institute LLP

Heating Systems across Bury

- We can map our modelled types of heating system across Bury.
- areas on these maps represents the areas served by different HV substations.
- results can be broken down further by detailed building type in different areas.
- can also produce results on buildings, network infrastructure, energy centre technologies and heat and electricity storage.
- Results include detailed cost breakdowns of all included

Modelled final distribution of domestic heating systems in Bury to achieve decarbonisation

© 2018 Energy Technologies Institute LLP

Key Local Authority Roles

- **Improving energy efficiency and resilience in buildings** insulation measures, focus on addressing fuel poverty.
- Low Carbon Energy/Heating making district heating systems and heat pumps commercially viable. Stimulate PV and biomass.
- Transport implementing sustainable travel programmes and promoting low-carbon vehicles.
- **Waste -** waste prevention and sustainable waste management, circular economy.
- **Low-carbon policies/plans** All local authority areas should develop a low-carbon plan that includes a high level of ambition for emissions reductions.
- **Own estate -** Reducing emissions from local authorities' own estate to demonstrate leadership. Support Community Energy.
- **Business Support –** to reduce resource use, support sector growth and skills development.

econekt

UNSTER

Existing Projects

- Smart Systems and Heat (SSH) one of 3 national pilots with the Energy Systems Catapult to deliver advanced energy master-planning
- Domestic Efficiency Local Energy Advice Programme (LEAP), £1.8m
 Warm Homes Fund Programme, Award Winning £9m Green Deal domestic energy efficiency programme & a £10m ECO Fuel Poverty Programme
- Public Buildings Efficiency/Management Triangulum and CityVerve IoT (MCC), £20m investment opportunity identified with Salix
- **NEDO** project a £20+ million partnership with the Japanese Government Agency: 550 Air source heat pumps in social homes with smart monitoring and engagement tools to pilot Demand Side Response
- **Heat Networks** £2.7m ELENA funding for project development capacity on heat networks and LED street-lighting. £10m funding for first two networks agreed.
- **Transport** Electric Vehicle recharging Infrastructure, £23m Velocity Cycling Network, Extension of Metrolink
- Business support £3m Green Growth programme.

GREATER MANCHESTER LOW CARBON HUB

Conclusion

Strong role for Authorities in incentivising low carbon transition:

- Local intelligence
- Effective strategy and policy
- Investor/Key partner
- Demonstrator/Partnership facilitator
- Trusted brand/Conduit to communities

Further work Required:

- `Business as Usual' not enough for 2050 Energy Transition Region
- Significantly scale up our energy efficiency activities and smart energy infrastructure – GM Energy Innovation Company
- Maximise the value of existing partnerships, strategic approaches and joined up thinking GM Smart Energy Plan
- Incentivise low carbon investment by others though stronger local policies Greater Manchester Spatial Framework
- Create investment frameworks which provide capacity for viable project development – GM Environment Fund

*exploring following Green Summit

