

PASSIVHAUS PERFORMANCE LEVELS IN CONTEXT

Daniel Tomlinson
Associate, GWPArchitecture

Focus

- New build housing, esp. social/affordable
- Cost
- Scalability
- Real world performance
- Energy efficiency (vs. carbon)

Why PassivHaus?

- Energy efficiency first
- A robust foundation for zero-carbon & NZEB
- Proven performance
- PHPP as a design tool
- Attention to detail
- Healthy internal environment

Levels

	Space Heat	Heating Load	Air Test	PE	PER
Passive House Passive House Institute Premium	15 kWh/(m² a)	10	0.6	N/A	30
Passive House Passive House Institute Color Plus Connection	15 kWh/(m² a)	10	0.6	N/A	45
Passive House Passive House Institute Classic Classic	15 kWh/(m² a)	10	0.6	120 kWh/(m² a) 120	60
Low Energy Building PHLEB	30 kWh/(m² a)	N/A	1.0	kWh/(m² a)	75

The Performance Gap

- Well understood problem
- Circa 40% higher than advertised using SAP / Part L
 - 60% Space Heating

= 54 kWh/m2.a

= 86 kWh/m2.a vs. 30/15

The Performance Gap

- Why?
 - Lack of attention to detail, from design through to construction
 - Wrong target / focus (Co2), TFEE Low
 - Construction quality (air tightness proxy)
 - Lack of quality assurance / vetting
 - Poor model (SAP)
 - 'SAP is not a design tool', etc

Closing the Gap

LEVEL	Space Heat (Efficiency)	Air Test	Components	QA	PHPP	
Low Energy Building Passive House Passive H	✓ ✓ ✓	1.0 0.6 0.6	Certified / QA	√ √ √	√ √ √	
Part L 2013 (SAP2012) Part L 2020 (SAP10.2) Part L 2025 'FutureHomes'	X ~ ?	~5 (10) 3.0 3.0?	Mix	X ~ ?	X X X	

Closing the Gap

- PHPP Model
 - Proven to reflect real world performance of dwellings
 - Model re-created by Certifier & checked by PHI
- Design & Construction
 - All thermal bridges quantified and input
 - Design + details reviewed by Certifier
 All design decisions have (modeled) consequences
 - Constructed junctions/details documented
 - Air test Pressurisation + De-pressurisation average
 - Material proof of purchase/installation (receipts/photography)

Closing the Gap

- PassivHaus gets closest
 - Co-heating tests within a few %
- Problem... schemes close to PH targets often fall away
 - Faux PassivHaus claims 'PassivHaus levels of insulation', etc

• ...the Performance Gap becomes a cliff edge

Broader Context

MACRO

- Fuel poverty
- Housing crisis
- Affordability
- Productivity

MICRO

- Planning
- Local environment
- Local community
- Social value

The Ideal

- Maximise space/form factor
- Optimise fenestration
- Ideal orientation
- Minimise complexity
- Design for longevity
 - Adaptable
 - Contextual
 - Robust

Vs. Real World Constraints (Context)

- Planning parking adjacent each home (crime)
- Opposition to terraces
- Resistance to density
- Vernacular
 - Materials, detailing

- Constrained brownfield site
- Problematic orientation
- Need for surveillance
- Push to maximise dwellings

• ...Grants / Budget

Case Study – Stoney Gate Walk

- 21 New Homes in Openshaw, east Manchester
- 3b/4p 84m2
- Targeting PassivHaus Classic and PHLEB
- Client One Manchester
- Brownfield, contaminated, infill Site

- Constraints
 - Tight cul-de sac location with school adjacent
 - Site required remediation & Phase 2
 SI found brick cellars
 - Surrounded on three sides with mature trees
 - Development density maximised
 - reduced opportunity for solar orientation

- Design Strategy
 - Contextual design focus
 - Design for pre-fabrication
 - Maximise economies of scale (repetition)
 - Minimise complexity
 - 'Thermal Box'
 - Take advantage of BIM
 - Window type (size) balanced using PHPP for each dwelling

- Scheme aspirational but cost limited
- Sensible, pragmatic approach taken to achieving PassivHaus (Classic) on one plot (3 dwellings)
- Pushed for PHLEB on remaining 18 dwellings to keep performance/quality up
- Specification
 - Wall & construction form kept constant, roof & slab insulation reduced to get scheme in budget
 - All windows/doors PH Certified uPVC triple glazed
 - Same certified MVHR maintained throughout
 - Low modulation gas boiler for DHW / space heating, common to all

- Plan / section fixed 'thermal box'
 - Façade articulation provides necessary variation & interest
- Junctions minimised, use of 'bob-tail' truss and service void under truss OSB
 - Only penetration through roof is SVP (1 per block) and TV aerials

- Prefabrication
 - Pre-insulated panelised timber frame.
- Replicable, (can be) non-proprietary, well understood, sustainable
 - Avoids pitfalls of modular: Too little (lack programme benefits)
 - Too much off site (Volumetric = width/design constraints, over engineering, cost)

- Full brick reveal provides 'free' shade in mid summer
- Masonry façade is contextual, durable and offers (some) thermal mass
- Timber frame with internal VCL
 - Achieving 0.6 hard (first block),
 =<1.0 (PHLEB) with met with 'ease'

- Terracing (or lack of) and orientation make a huge difference (largest delta = 30%)
- PHLEB dwellings circa
 32% co2 reduction over
 Part L
- PH Classic circa 40%
- Part L 2020 'levels' proposed are 20 & 31% reduction over 2013

- Cost Circa £1300m2 (incl. remediation, site/landscape works)
- Model is replicable at scale
 - Design/detailing can be carried forward – 'pattern book' approach
- 2020 Part L & Manchester opposition to Gas changes the equation
 - Focus on reducing energy demand more important then ever (comparative cost of electricity)

Summary

- Target the highest performance contextually possible
 - PassivHaus the foundation for zero carbon & 2028/2038
- Don't abandon if higher levels aren't feasible at all times in all paces 'Cliff Edge' performance gap
 - Don't regress to 0 if 100% not possible
- Future uncertainty (grid/carbon), target energy efficiency ('Fabric First')
- Work with communities, stakeholders & local govt' to increase awareness of what makes sustainability achievable
- Design simply

ukpassivhaus conference 2019

Thank you...

